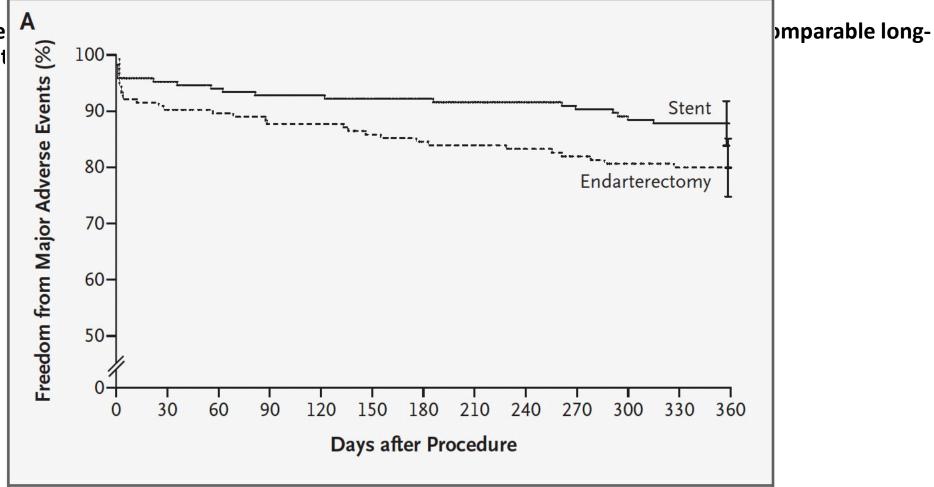
CAROTID STENTING WILL EVENTUALLY REPLACE CEA

For the Motion:

Asha Kothari, PGY-3 Vascular Surgery
University of Manitoba
03 April, 2025

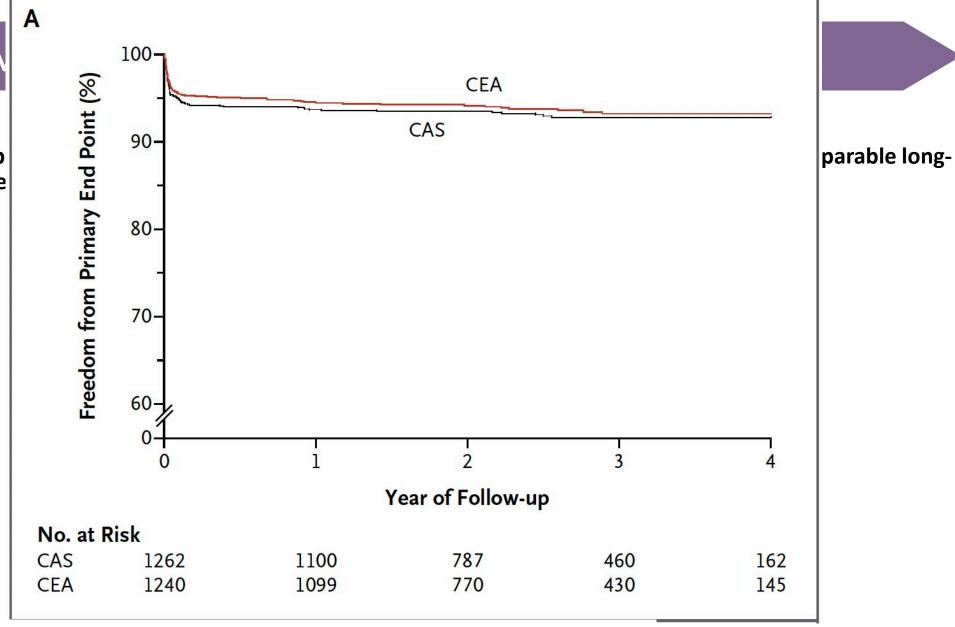
Presenter Disclosure

I have no current relationships with commercial entities.


CAS WILL EVENTUALLY REPLACE CEA

1. Even in the absence of contemporary medical therapy, CAS has already been shown to offer comparable long-term outcomes to CEA.

 Even in the abse term outcomes t



Yadav JS, Wholey MH, Kuntz RE, et al. Protected carotid-artery stenting versus endarterectomy in high-risk patients. N Engl J Med 2004;351:1493-501.

SAME SAN

1. Even in the ab term outcome

Brott TG, Hobson RW II, Howard G, et al. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med 2010; 363: 11-23

Days

Even in the term outco

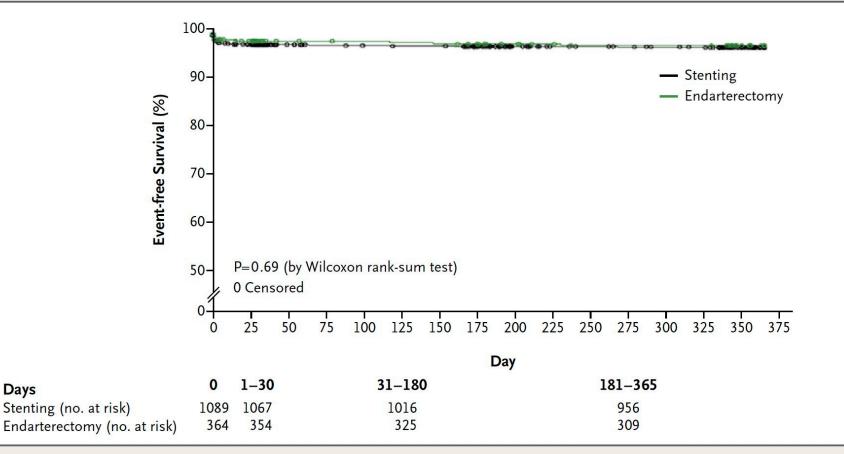
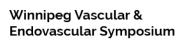


Figure 2. Kaplan-Meier Analysis of Freedom from the Primary Composite End Point.

Shown is the Kaplan-Meier survival curve for freedom from death, stroke, and myocardial infarction within 30 days and from ipsilateral stroke within 365 days after the procedure in the intention-to-treat population.

Rosenfield K, Matsumura JS, Chaturvedi S, et al. Randomized Trial of Stent versus Surgery for Asymptomatic Carotid Stenosis. N Engl J Med 2016;374:1011-20.



rable long-

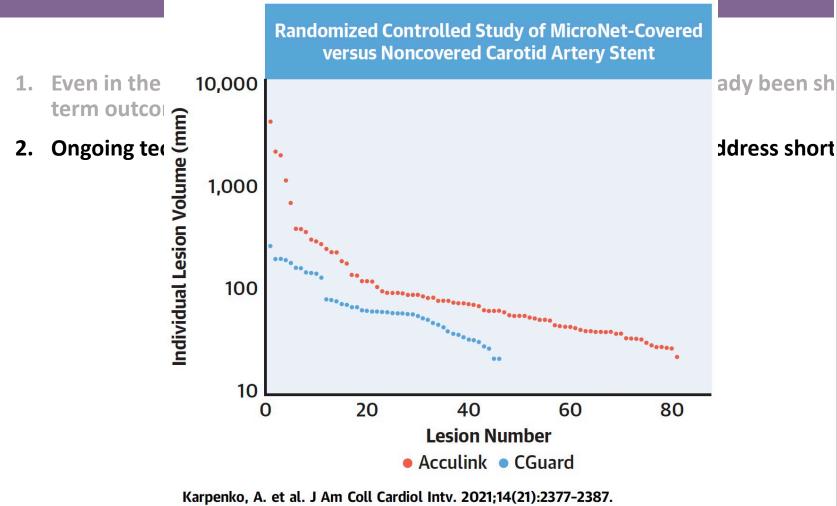
1. Even in the absence of contemporary medical therapy, CAS has already been shown to offer comparable long-

		CEA		tfCAS				
	No statin (n = 13,434)	Statin (n = 13,434)	RR (95% CI)	<i>P</i> Value	No statin (n = 2707)	Statin (n = 2707)	RR (95% CI)	<i>P</i> Value
All patients								
Stroke/ death	228 (1.7%)	185 (1.4%)	1.2 (1.02-1.5)	.03	130 (4.8%)	76 (2.8%)	1.7 (1.3-2.3)	<.01
Stroke	200 (1.4%)	163 (1.3%)	1.1 (0.92-1.4)	.22	82 (3.0%)	51 (1.9%)	1.6 (1.1-2.3)	.01
Death	60 (0.4%)	39 (0.3%)	1.6 (1.03-2.4)	.04	61 (2.3%)	35 (1.3%)	1.7 (1.2-2.6)	.01
MI	73 (0.5%)	44 (0.3%)	1.8 (1.2-2.6)	<.01	10 (0.4%)	6 (0.2%)	1.7 (0.6-4.6)	.32

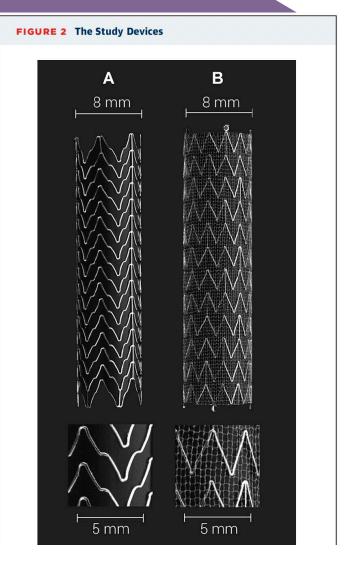
Anjorin AC, Marcaccio CL, Rastogi V, et al. Statin therapy is associated with improved perioperative outcomes and long-term mortality following carotid revascularization in the Vascular Quality Initiative. J Vasc Surg 2023;77:158-69 e8.

OLD AND BUSTED, OR NEW HOTNESS?

- 1. Even in the absence of contemporary medical therapy, CAS has already been shown to offer comparable long-term outcomes to CEA.
- 2. Ongoing technological and procedural advancements continue to address shortcomings of CAS.

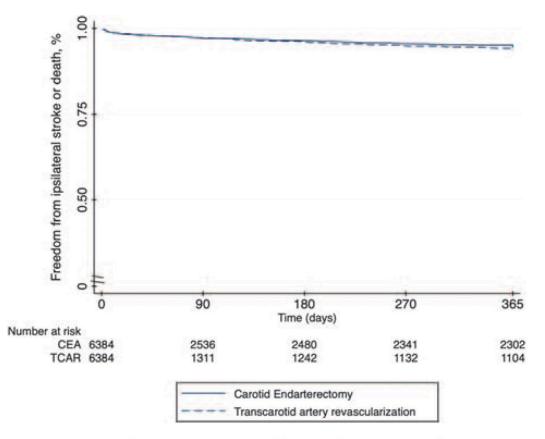

OLD AND BUSTED, OR NEW HOTNESS?

	Open	cell	Closed cell		Risk Ratio	ı	Risk Ratio	
Study	Events	Total	Events	Total	95% CI		95% CI	
EVA-3S	12 (11.9)	101	11 (7.6)	145	1.57 (0.72-3.41)			
SPACE	14 (11.0)	127	28 (6.3)	446	1.76 (0.95-3.23)		 	_
ICSS	35 (9.5)	367	19 (5.1)	371	1.86 (1.09-3.19)			_
Total	61 (10.3)	595	58 (6.0)	962	1.76 (1.23-2.52)		-	
Heterogeneity: interaction p=0.938							——————————————————————————————————————	
Test for overall effe	ect: p=0.002						cell Favours do	


Wodarg F, Turner EL, Dobson J, et al. Influence of stent design and use of protection devices on outcome of carotid artery stenting: a pooled analysis of individual patient data. J Neurointerv Surg 2018;10:1149-54.

OLD AND BUSTED, OR NEW HOTNESS?

Karpenko A, Bugurov S, Ignatenko P, et al. Randomized Controlled Trial of Conventional Versus MicroNet-Covered Stent in Carotid Artery Revascularization. JACC Cardiovasc Interv 2021;14:2377-87.


OLD AND B

- 1. E TABLE 2. In-hosp
- **2.** O

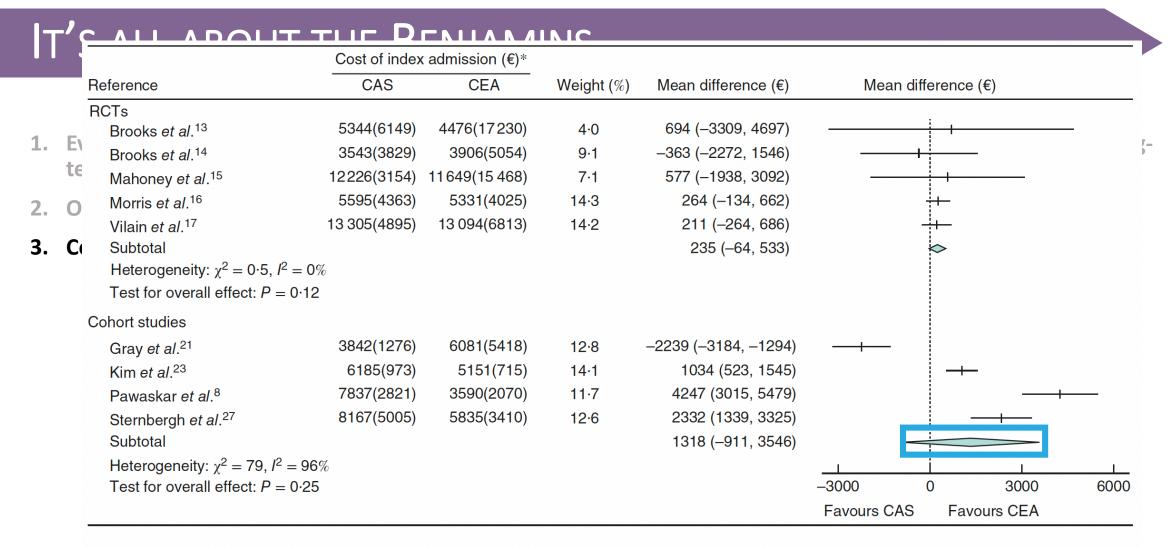
In-hospital Outcome

Stroke/death Death Ipsilateral Stroke Stroke

- Myocardial infarction Stroke/death/Myoca
- Cranial nerve injury
- region Post-procedural Hyp
- ★ Post-procedural Hypology
 Bleeding with intervolution
- ★ LOS more than 1 da Non-Home Dischar

FIGURE 1. Kaplan-Meier curve for Ipsilateral Stroke or Death after transCarotid artery revascularization and carotid endarterectomy.

CE A	
CEA	
<i>P</i> -value	
0.490	
0.722	
0.080	
0.641	
0.025	\bigstar
0.486	
	\bigstar
	*
< 0.001	\bigstar
0.527	
< 0.001	\bigstar
0.343	
	0.490 0.722 0.080 0.641 0.025 0.486 <0.001 <0.001 0.527 <0.001


Malas MB, Dakour-Aridi H, Kashyap VS, et al. TransCarotid Revascularization With Dynamic Flow Reversal Versus Carotid Endarterectomy in the Vascular Quality Initiative Surveillance Project. Ann Surg 2022;276:398-403.

IT'S ALL ABOUT THE BENJAMINS

- 1. Even in the absence of contemporary medical therapy, CAS has already been shown to offer comparable long-term outcomes to CEA.
- 2. Ongoing technological and procedural advancements continue to address shortcomings of CAS.
- 3. Comparable economic outcomes with shorter hospital stays makes CAS an attractive economic option.

Fig. 3 Differences in costs of index hospital admission between patients treated with carotid artery stenting (CAS) or carotid endarterectomy (CEA). *Values are mean(s.d.). Mean differences are shown with 95 per cent confidence intervals

de Vries EE, Baldew VGM, den Ruijter HM, de Borst GJ. Meta-analysis of the costs of carotid artery stenting and carotid endarterectomy. Br J Surg 2017;104:1284-92.

CAS WILL EVENTUALLY REPLACE CEA

- 1. Even in the absence of contemporary medical therapy, CAS has already been shown to offer comparable long-term outcomes to CEA.
- 2. Ongoing technological and procedural advancements continue to address shortcomings of CAS.
- 3. Comparable economic outcomes with shorter hospital stays makes CAS an attractive economic option.