

Step 3 – Iliofemoral disease

Step 4 – Explore the utility of the technique in challenging cases

Step 5 – Experience with failure/secondary interventions

Lessons Learned

- Can perforate the SFA or EIA if not careful
 - Can be easily salvaged with covered stents
- Need common femoral disease to start endarterectomy
- Occlusion easier than stenosis
- Method of failure is neointimal hyperplasia, surveillance duplex is valuable
 - -? Role for DCB

Some other valuable use cases

What is the evidence for this technique?

Hybrid-based iliofemoral endarterectomy for severe and complete iliofemoral occlusive disease

Jessica M. Gowing, MD,^a Michael J. Heidenreich, MD,^b Crystal M. Kavanagh, MD,^c and Abdulhameed Aziz, MD,^b Ypsilanti, Mich; and Toronto, Ontario, Canada

Journal of Vascular Surgery March 2021

Table I. Patient demographics and preprocedure variables

Indication		
Claudication	30 (48)	
CLI	33 (52)	
Type of CLI		
Gangrene	3 (9)	
Rest pain	16 (49)	
Tissue loss	14 (42)	
CLI, Critical limb ischemia; SD, standard deviation.		

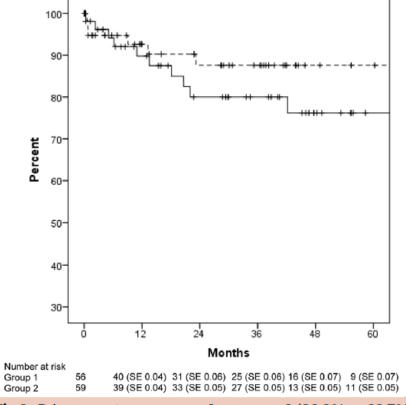
~20% occlusion of ipsilateral internal liac artery

Table III. Stent placement

Stent location	No. of procedures $(N = 63)$ (% of total)	Extends into EIA	Additional EIA stent placed
CIA stent	47 (75)	21	10
EIA stent only	11 (17)	-	-
No stent placed	5 (8)	-	-
CIA, Common iliac artery; EIA, external iliac artery.			

Table II. Procedure variables and outcomes

Variable	No. (%) or mean \pm SD
Procedure time, hours	3.7 ± 0.1
Estimated blood loss, mL	482 ± 487
Length of stay, days	3 ± 3
90-Day mortality	1 (2)
30-Day readmissions	9 (15)
Patency rates	
Primary	57 (90)
Primary assisted	4 (97)
Secondary	2 (100)
Duration of follow-up, months	20 ± 21

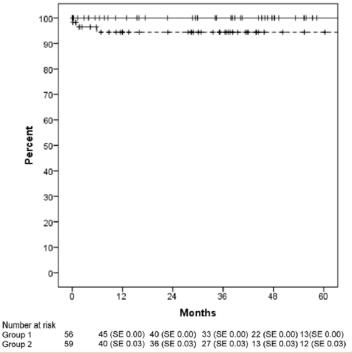

Remote iliac artery endarterectomy with selective stent use at the proximal dissection zone in TransAtlantic Inter-Society Consensus C and D lesions

Journal of Vascular Surgery April 2019

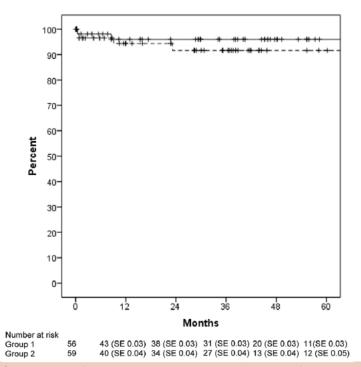
Christian Uhl, MD,^a Thomas Betz, MD,^a Karin Pfister, MD,^b Ingolf Töpel, MD,^a and Markus Steinbauer, MD,^a Regensburg, Germany

Group 1 – No stenting post RE Group 2 – CIA-EIA stenting of endpoint

Fig 1. Primary patency, group 1 vs group 2 (89.8% vs 92.7% after 1 year [P = .501]; 76.2% vs 87.6% after 5 years [P = .286]). *SE*, Standard error.



Remote iliac artery endarterectomy with selective stent use at the proximal dissection zone in TransAtlantic Inter-Society Consensus C and D lesions



Journal of Vascular Surgery April 2019

Christian Uhl, MD,^a Thomas Betz, MD,^a Karin Pfister, MD,^b Ingolf Töpel, MD,^a and Markus Steinbauer, MD,^a Regensburg, Germany

Fig 3. Limb salvage, group 1 vs group 2 (100.0% vs 94.5% after 1 year [P = .084]; 100.0% vs 94.5% after 5 years [P = .084]). *SE*, Standard error.

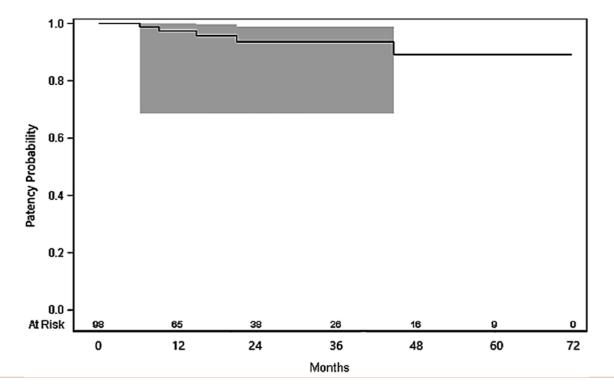
Fig 2. Secondary patency, group 1 vs group 2 (96.0% vs 94.3% after 1 year [P = .697]; 94.0% vs 91.6% after 5 years [P = .435]). *SE*, Standard error.


Balloon-assisted remote external iliac artery endarterectomy: A safe and durable technique for the treatment of iliac artery occlusive disease

John P. Henretta, MD,^a Matthew A. Wagner, MD,^{a,b} Lemuel B. Kirby, MD,^a Michael G. Douglas, MD,^a Douglas J. MacMillan, MD,^a Sheri Denslow, PhD,^b Marc Olivier Duverseau, MD,^{a,b} Weldon K. Williamson, MD,^a and Lynne C. Hampton, MBA, MHA, RN,^a Asheville, NC

Table. Participant demographics and characteristics

	No.		%
Participants (N = 97)			
Age, years, mean ± SD		69 ± 9	
Sex			
Female	41		42.3
Male	56		57.7
Presentation			
Rest pain	29		29.9
Tissue loss	28		28.9
Claudication	40		41.2
Death	15		15.5
Treated vessels (N = 101)			
Occluded	32		31.7
Stenotic	69		68.3
Stent total	7 8		77.2
CIA	29		28.7
Transition	59		58.4
Both	10		9.9



Balloon-assisted remote external iliac artery endarterectomy: A safe and durable technique for the treatment of iliac artery occlusive disease

John P. Henretta, MD,^a Matthew A. Wagner, MD,^{a,b} Lemuel B. Kirby, MD,^a Michael G. Douglas, MD,^a Douglas J. MacMillan, MD,^a Sheri Denslow, PhD,^b Marc Olivier Duverseau, MD,^{a,b} Weldon K. Williamson, MD,^a and Lynne C. Hampton, MBA, MHA, RN,^a Asheville, NC

90% primary patency @ 5 years

Randomized controlled trial of remote endarterectomy versus endovascular intervention for TransAtlantic Inter-Society Consensus II D femoropopliteal lesions

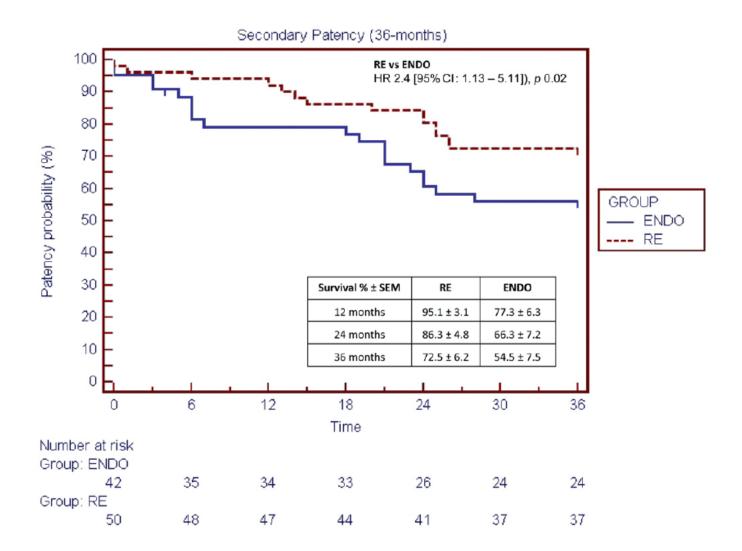
JOURNAL OF VASCULAR SURGERY December 2012

Roberto Gabrielli, MD, PhD,^a Maria Sofia Rosati, MD, PhD,^b Silvio Vitale, MD,^a Giulia Baciarello, MD,^b Andrea Siani, MD, PhD,^a Roberto Chiappa, MD,^a Giovanni Caselli, MD,^a and Luigi Irace, MD, PhD,^a Rome, Italy

Table I. Baseline characteristics of the study population

Variable	RE (n = 51) No. (%)	ENDO (n = 44) No. (%)	P
Sex			.90
Male	33 (65)	29 (66)	
Female	18 (35)	15 (34)	
Age >65 years	34 (67)	31 (71)	.69
Comorbidities and risk factors	` /	` /	
Diabetes	23 (45)	16 (37)	.39
Hypercholesterolemia	24 (48)	17 (39)	.41
Hypertension	35 (68)	33 (75)	.48
Renal failure ^a	7 (14)	8 (19)	.55
Smoking (current or recent)	36 (71)	33 (76)	.62
CLI (Rutherford 4)	25 (49)	18 (41)	.43
Gangrene (Rutherford 5)	6 (11.8)	5 (11.4)	.95

CLI, Critical limb ischemia; ENDO, endovascular treatment; RE, remote endarterectomy.


^aDefined as creatinine <1.5 mg/dL.

Primary patency (36 months) 100 **RE vs ENDO** 90 HR 1.89 [95% CI: 0.94 - 3.78], p 0.07 80 Patency probability (%) 70 60 **GROUP** 50 **ENDO** ---- RE 40 30 Survival % ± SEM RE **ENDO** 78.4 ± 5.7 20 12 months 59.1 ± 7.2 56.8 ± 7.4 24 months 76.5 ± 5.9 10 30 months 74.2 ± 6.1 51.2 ± 7.9 0 18 6 12 24 30 36 Time Number at risk Group: ENDO 42 31 26 25 23 22 21 Group: RE 39 37 32 50 41 40 33

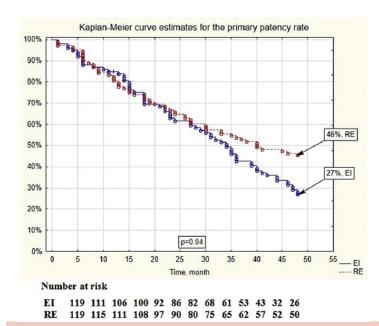
Assisted-Primary Patency (36-months) 100 **RE vs ENDO** 90 HR 2,45 [95% CI: 1,20 - 5,02], p .01 80 Patency probability (%) 70 60 GROUP 50 ENDO ---- RE 40 Survival % ± SEM 30 RE **ENDO** 12 months 86.3 ± 4.8 72.7 ± 6.7 20 24 months 80.1 ± 5.6 58.9 ± 7.4 10 36 months 66.6 ± 6.4 52.3 ± 7.5 0 12 18 24 30 36 0 6 Time Number at risk Group: ENDO 42 35 33 31 26 23 23 Group: RE 50 48 45 43 40 35 34

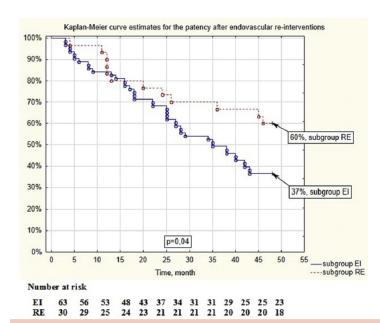
A prospective randomized trial on endovascular recanalization with stenting versus remote endarterectomy for the superficial femoral artery total occlusive lesions

Journal of Vascular Surgery July 2022

Shoraan Saaya, PhD, Olesia Osipova, MD, Alexander Gostev, PhD, Artem Rabtsun, MD, Vladimir Starodubtsev, PhD, Alexey Cheban, MD, Pavel Ignatenko, PhD, and Andrey Karpenko, PhD, Novosibirsk, Russian Federation

Table I. Baseline characteristics


Characteristic of patients	Group EI (n = 119)	Group RE (n = 119)	<i>P</i> value
Male/female	88/31	91/28	.18
Age, years	63.34 ± 6.69	62.58 ± 7.82	.93
Rutherford			
Stage 3	25 (21)	20 (17)	.41
Stage 4	83 (70)	93 (78)	.14
Stage 5	6 (5)	4 (3)	.52
Stage 6	5 (4)	2 (2)	.25
The mean length of SFA lesion (ipsilateral), mm	289.6 ± 56.2	291 ± 54.2	1


A prospective randomized trial on endovascular recanalization with stenting versus remote endarterectomy for the superficial femoral artery total occlusive lesions

Journal of Vascular Surgery July 2022

Shoraan Saaya, PhD, Olesia Osipova, MD, Alexander Gostev, PhD, Artem Rabtsun, MD, Vladimir Starodubtsev, PhD, Alexey Cheban, MD, Pavel Ignatenko, PhD, and Andrey Karpenko, PhD, Novosibirsk, Russian Federation

Fig 2. Kaplan-Meier curve estimates for the primary patency rates. *EI*, Endovascular recanalization with stenting; *RE*, remote endarterectomy.

Fig 3. Kaplan-Meier curve estimates for the patency rates after endovascular reinterventions. *EI*, Endovascular recanalization with stenting; *RE*, remote endarterectomy.

Femoro-popliteal bypass *versus* remote endarterectomy: a propensity matched analysis

Saaya B. SHORAAN *, Alexander A. GOSTEV, Olesya S. OSIPOVA, Alexey V. CHEBAN, Pavel V. IGNATENKO, Vladimir B. STARODUBTSEV, Andrey A. KARPENKO

Department of Vascular and Hybrid Surgery, National Medical Research Center, Ministry for Public Health Care of Russian
Federation, Novosibirsk, Russia

International Angiology 2024 June;43(3):358-66

DOI: 10.23736/S0392-9590.24.05216-7

Freedom from TLR (Kaplan-Meier) Primary patency (Kaplan-Meier) Secondary patency (Kaplan-Meier) 100 90 85%, GSV Freedom from TLR (%) Primary patency (%) Primary patency (%) 70 60 50 50 50 30 30 Freedom from TLR Secondary patency P GSV 0.634 RE 0.00 20 35 Time (month) Time (month) Time (month) Number at risk 39 39 38 39 38 38 38 38 70 67 51 70 69 68 65 57 94 76 108 108 107

Conclusions

- How has the introduction of Remote endarterectomy changed my practice?
- Fails forward very well extended timeline of limb salvage (EndoRE, Endo, Bypass > any 1 alone)
- Multi-level iliofemoral occlusive disease
 - Always consider
- Femoropopliteal disease:
 - Only in cases where popliteal artery is open at some point distally
 - GSV > RE > Endo > PTFE

